Utilizing Reproductive Tract Scoring and Managing Bull Fertility

Shelby L. Rosasco, Ph.D.

Beef Extension Specialist University of Wyoming

Reproductive Efficiency

Optimize pregnancy rates
early in the breeding season
and select/develop
replacement heifers that are
highly fertile at the lowest
cost possible, to maximize
longevity

Reproductive Efficiency

Management

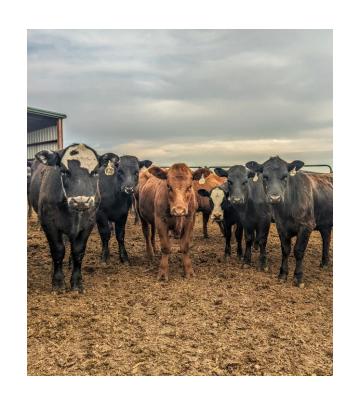
+

Selection Pressure

Nutrition & Health

Reproductive Technologies

How can we evaluate reproductive efficiency?

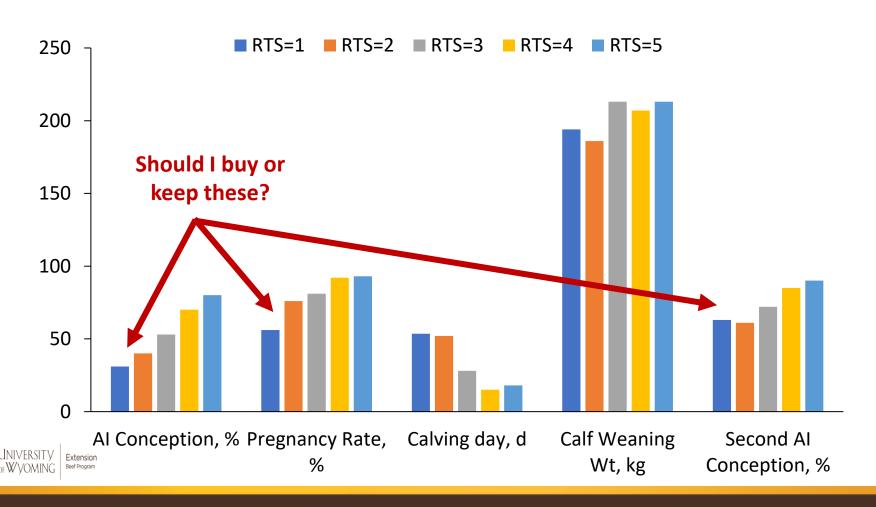

- Maintaining records of number of females exposed (Al or bulls)
- Date when bulls were turned in and removed
- Number of calves weaned or weaned calf percentage
- Pregnancy rate (number pregnant/number exposed)
- Calving distribution
 - What proportion calved by day 21, 42, and 63

Provides insight into the success of the current reproductive management program

Criteria that heifers should meet...

- ✓ What has the pregnancy rate in your heifers been over the past few years?
- ✓ What is the calving distribution of your heifers and young cows the past few years?
- ✓ Have you selected an appropriate target weight? Do you have a nutritional management plan?
- ✓ What proportion of your heifers have a reproductive tract score of ≥ 4?

Reproductive tract score

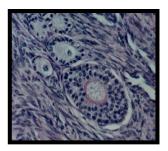

- Reproductive tract score (RTS) accounts for:
 - Uterine horn diameter
 - Ovarian size
 - Structure present on ovary

Reproductive tract score	e Uterine Horns	Length, mm	Height, mm	Width, mm	Ovarian structures
1	Immature, <20 mm in diameter, no tone	15	10	8	No palpable follicles
2	20 - 25 mm in diameter, no tone	18	12	10	8 mm follicles
3	25 - 30 mm in diameter, slight tone	22	15	10	8 -10 mm follicles
4	30 mm in diameter, good tone	30	16	12	> 10 mm follicles, CL possible
5	>30 mm in diameter, good tone	>32	20	15	>10 mm follicles, CL present

Ovaries

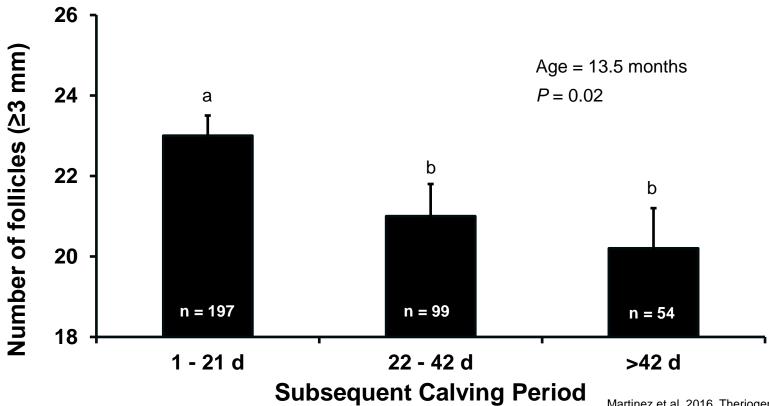
Relationship between reproductive tract score (RTS) and heifer performance

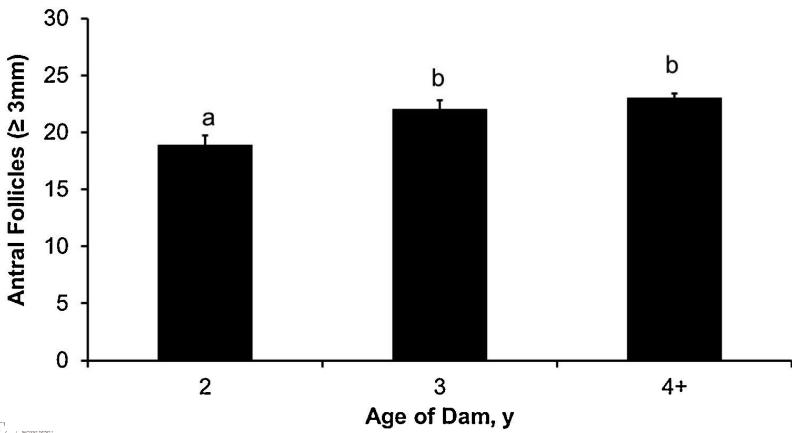
Antral Follicle Count


- Method of predicting ovarian reserve (Ireland et al., 2008)
- Determined via trans-rectal ultrasonography of the ovary
- Number of follicles growing within an estrous cycle wave is highly repeatable (Burns et al., 2005; Ireland et al., 2007)
- Follicles classified into 3 categories:
 - High ≥ 25
 - Moderate 16-24
 - Low ≤15

Antral Follicle Count

- Allow us to predict ovarian reserve (Ireland et al., 2008)
- Highly repeatable within individual (Burns et al., 2005; McNeel et al., 2017)
- High AFC heifers are more fertile (Cushman et al., 2009; Mossa et al., 2012)
- Heritability is reported to be moderate to high (Walsh et al., 2014)



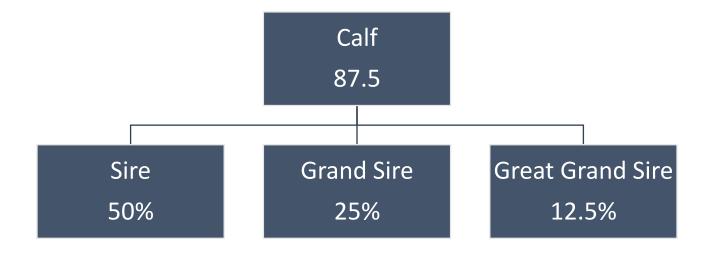

Cross-bred beef heifers with lower numbers of follicles conceive later

Martinez et al. 2016. Theriogenology. 85:466 McNeel et al. 2015. Theriogenology. 84:1061 Cushman et al. 2014. Livestock Sci. 162:252 Mossa et al. 2012. J. Dairy Sci. 95:2355

Age of dam influenced the number of antral follicles detectable by ultrasonography

Goal of Beef Cow-calf Production

 To wean one healthy, heavy calf with the greatest genetic potential to perform per cow, every year

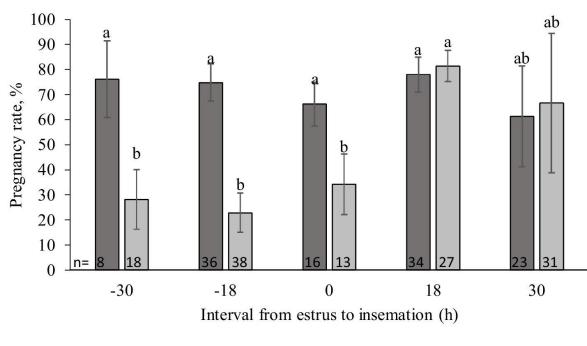

Recipe for a calf

Bull Fertility

 87.5% of the genetic makeup of a calf crop is determined by the last 3 bulls used

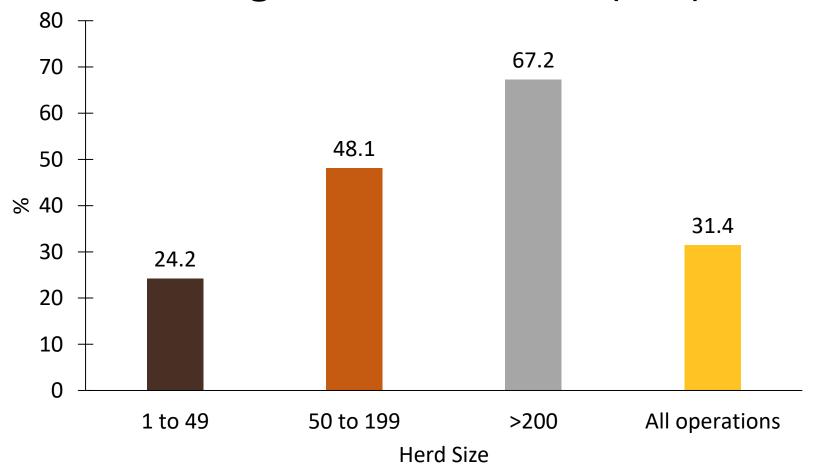
Bull Fertility

- Essential Attributes of Fertility
 - Physically capable to mate
 - Capacity to produce spermatozoa/sperm
 - Functionally normal spermatozoa
- Breeding Soundness Exam BSE

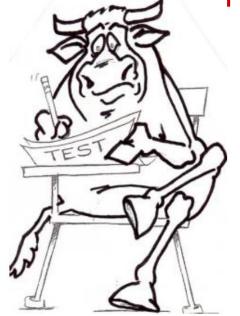

Breeding Soundness Exam

- What is the goal of a breeding soundness exam (BSE)?
 - Identify infertile bulls
 - Can identify subfertile bulls but limited based on current standards
- Pass/Fail Exam
- When do we need to perform a BSE?
 - Need to do one every year
 - 30-60 days prior to breeding season
- Bulls change from season to season
- Cheap insurance policy

Bull Fertility


- BSE is a great tool to detect sterile or infertile bulls
- It is not a guarantee that the bull has high fertility
- It does not take into account bull libido either

■Bull 1 ■Bull 2


Breeding Soundness Exam (BSE)

Breeding Soundness Exam (BSE)

- A uniform method of assessing a bull's likelihood of establishing pregnancy in an appropriate number of open, healthy, cycling cows or heifers in a defined breeding season.
- Includes 4 components:
 - Physical Exam
 - Scrotal circumference
 - Sperm motility
 - Sperm morphology

Breeding Soundness Exam – Why? When?

- Economically, it has shown to pay over \$17/cow return when you invest in bull BSE
 - If a bull is exposed to 30 cows.....\$510
 - Checking bulls, so they can do their job
 - Make sure nothing is wrong with them physically or with sperm production
- When should we do a BSE?
 - Individual ranch decides
 - Before purchasing the bull
 - Before the breeding season
 - After the breeding season (?)

Keep in mind the length of the spermatogenesis cycle.... **61 days

What are we evaluating?

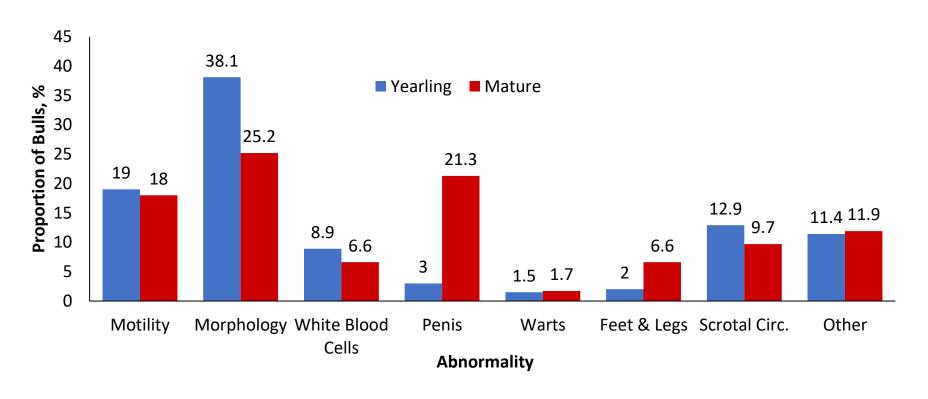
- Physical exam
 - Eyes
 - Teeth & mouth
 - Body condition
 - Feet & legs
 - Sheath → confirmation, deformities, abscess, etc.
 - Penis → extension, deviations, persistent frenulum
 - Testes → size, symmetric
 - Internal accessory glands → Prostate, Ampulla, Seminal vesicles (vesiculitis is fairly common in bulls asymmetry or pain associated with palpation), Inguinal rings
- Sperm motility
- Sperm morphology

What are we evaluating?

Age (months)	<15	15-18	19-21	22-24	>24
Minimum Scrotal Circumference (cm)	30	31	32	33	34

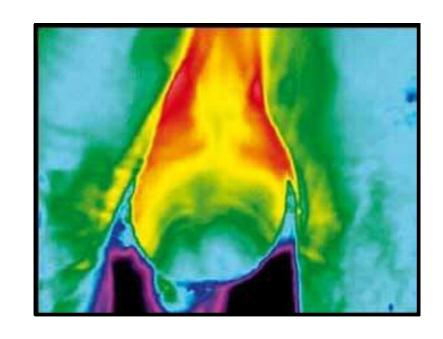
Motility

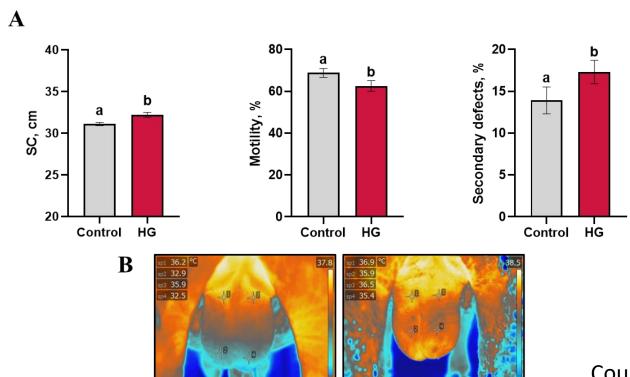
iviotility						
Gross Activity	Individual Activity	Rating				
Rapid Swirling	~70%	Very good				
Slower Swirling	50-69%	Good				
Generalized Oscillation	30-49%	Fair				
Sporadic Oscillation	<30%	Poor				


Morphology

Minimum is 70% normal sperm heads

Goal for examining morphology
is to determine the % and types
of sperm abnormalities present
in a sample and record
morphology


Reasons for BSE failure in yearling and mature beef bulls


Impacts of Post-weaning Diet on Semen Quality

- High energy diets fed postweaning influence scrotal growth and semen quality
 - ↑ scrotal circumference
 - ↓ total sperm production
 - Delay epididymal transport
 - ↓ progressive motility
 - ↑ spermatozoa morphological abnormalities
 - ↑ scrotal temperature
 - Scrotal adiposity

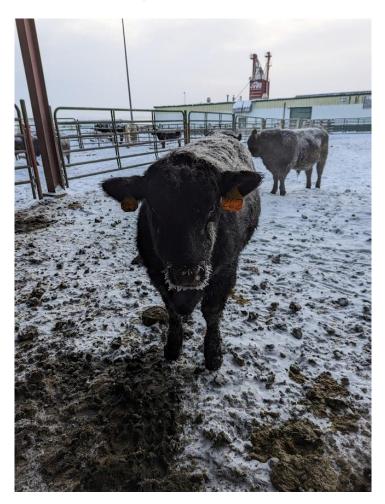
Impact of feeding young bulls a moderate-gain diet primarily comprised of forage (Control) versus a high-energy diet consisting of 80% concentrate and 20% forage (High Gain) for a period of 168 days after weaning

Coulter et al., (1997)

The Breeding Season and Bull Plane of Nutrition

- Variation in bull workload
 - Ranged from 4 to 80 females per bull (Dahlen and Stoltenow, 2015)
- Weight loss during the breeding season
 - Can be from 100 to 400 lbs(Boyles et al., 2011; Walker et al., 2009; Hersomand Thrift, 2008)
- Weight gain before next breeding season
 - Must regain BW in preparation for subsequent breeding season (Barth, 2013)

Bull Management During the Off Season


- Plane of nutrition impacts mature bull fertility
- Bulls should be maintained at a BCS of 5 or 6
- Good mineral program
 - Selenium critical for normal spermatogenesis
 - Zinc plays role in male fertility
 - Critical for sperm-cell plasma membrane integrity, tail morphology and thus motility

Bull Management During Winter

Where do bulls go over winter?

- A. Bull pasture
- B. Dry lot
- C. Stay out with the cows
- D. Crop residue
- E. Other

Cold Weather Impacts on Fertility

- Low temperatures and windy conditions can easily increase feed requirements 25 to 30 percent above normal maintenance requirements
 - Lack of wind protection and/or bedding will increase the chance of frost damage to the scrotum and testicles
- Cold weather and wind chill can result in bull infertility
 - Tissue Damage
- Can cause blisters and scabs from frostbite
- Frostbite will appear as discoloration, a scab, and/or sloughing of the lower scrotal portion
 - Spermatogenesis takes 61 days
- Reevaluate bulls with BSE 45

Effect of severity of frostbite on semen quality in bulls

	Severity of Frostbite			
Soundness Score	Mild	Moderate	Severe	
Satisfactory (%)	89.5	48	2.1	
Questionable (%)	9.5	25.3	9.2	
Unsatisfactory (%)	1	26.7	88.7	

Take Home Message...

- Nutritional management of bulls is critical

 consider the genetic contribution of bulls to your cowherd his fertility is important
- Over-conditioning can have detrimental effects on semen quality
- Consider performing a BSE 30-60 days before the breeding season to identify subfertile bulls

University of Wyoming High Altitude Bull Test and Sale

- 1. Evaluate potential sires on their ability to serve producers at high altitude
- 2. Increase applied production agriculture experience available for students
- 3. Engage producers in research and education related to brisket disease and bull development
- Second annual test currently underway (November 2023 March 2024)
 - 79 bulls (Angus, Charolais, Red Angus, Hereford, Simmental, Shorthorn)
 - 45-day screening period, 70-day feed efficiency test, PAP testing, carcass ultrasound, breeding soundness exam
 - Creation of marketing materials flyers, sale catalog, videos, etc.
- Fall and Spring undergraduate course
 - 16 students currently enrolled
- Extension field day and sale on March 9th
 - Online/live sale

University of Wyoming Brisket Disease Survey

- Anonymous survey for cow/calf and feedlot producers on characterization of brisket disease and risk factors
- https://bit.ly/brisket-disease-survey

Thanks!!

Contact Information:

Email: srosasco@uwyo.edu

Office: (307)766-2329

Cell: (209)753-8227

Beef Extension Website coming soon!!!

